已知函数 ,且能表示成一个奇函数和一个偶函数的和.(1)求和的解析式.(2)命题:函数在区间上是增函数;命题:函数是减函数,如果命题、有且仅有一个是真命题,求实数的取值范围.(3)在(2)的条件下,比较和的大小.
一个袋子里装有7个球, 其中有红球4个, 编号分别为1,2,3,4; 白球3个, 编号分别为2,3,4. 从袋子中任取4个球 (假设取到任何一个球的可能性相同). (Ⅰ) 求取出的4个球中, 含有编号为3的球的概率; (Ⅱ) 在取出的4个球中, 红球编号的最大值设为X ,求随机变量X的分布列和数学期望.
在△中,内角的对边分别为,已知.(Ⅰ)求;(Ⅱ)若,求△面积的最大值.
对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.
已知椭圆的长轴两端点分别为,是椭圆上的动点,以为一边在轴下方作矩形,使,交于点,交于点.(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;(Ⅱ)如图(2),若,试证明:成等比数列.
(本小题满分16分)如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将与接通.已知,,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设与所成的小于的角为.(Ⅰ)求矩形区域内的排管费用关于的函数关系式;(Ⅱ)求排管的最小费用及相应的角.