在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.(1)如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;(2)将三角板从(1)中的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,在这个过程中,请你观察、探究并解答:①∠PEF的大小是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点所经过的路线长.
如图,一次函数 y = 3 4 x + 6 的图象交 x 轴于点 A 、交 y 轴于点 B , ∠ ABO 的平分线交 x 轴于点 C ,过点 C 作直线 CD ⊥ AB ,垂足为点 D ,交 y 轴于点 E .
(1)求直线 CE 的解析式;
(2)在线段 AB 上有一动点 P (不与点 A , B 重合),过点 P 分别作 PM ⊥ x 轴, PN ⊥ y 轴,垂足为点 M 、 N ,是否存在点 P ,使线段 MN 的长最小?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.
某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第 x 天 ( 1 ⩽ x ⩽ 30 且 x 为整数)的销量为 y 件.
(1)直接写出 y 与 x 的函数关系式;
(2)在这30天内,哪一天的利润是6300元?
(3)设第 x 天的利润为 W 元,试求出 W 与 x 之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.
如图, ΔACE , ΔACD 均为直角三角形, ∠ ACE = 90 ° , ∠ ADC = 90 ° , AE 与 CD 相交于点 P ,以 CD 为直径的 ⊙ O 恰好经过点 E ,并与 AC , AE 分别交于点 B 和点 F .
(1)求证: ∠ ADF = ∠ EAC .
(2)若 PC = 2 3 PA , PF = 1 ,求 AF 的长.
如图,建筑物 C 在观测点 A 的北偏东 65 ° 方向上,从观测点 A 出发向南偏东 40 ° 方向走了 130 m 到达观测点 B ,此时测得建筑物 C 在观测点 B 的北偏东 20 ° 方向上,求观测点 B 与建筑物 C 之间的距离.(结果精确到 0 . 1 m .参考数据: 3 ≈ 1 . 73 )
为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生 ( 3 名男生,2名女生)获奖.
(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰好是男生的概率为 .
(2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.