已知在等比数列中,,且是和的等差中项.(1)求数列的通项公式;(2)若数列满足,求的通项公式.
(本小题满分14分)设和是函数的两个极值点,其中,.(1)若曲线在点处的切线垂直于轴,求实数的值;(2)求的取值范围;(3)若,求的最大值(是自然对数的底数).
(本小题满分13分)在平面直角坐标系中,椭圆过点和点.(1)求椭圆的方程;(2)已知点在椭圆上,为椭圆的左焦点,直线的方程为.(i)求证:直线与椭圆有唯一的公共点;(ii)若点关于直线的对称点为,探索:当点在椭圆上运动时,直线是否过定点?若过定点,求出此定点的坐标;若不过定点,请说明理由.
(本小题满分12分)已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点.(1)证明:;(2)判断并说明上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
(本小题满分12分)某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为.(1)分别求出,的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差和,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差,其中为数据的平均数).
(本小题满分12分)已知为等比数列,其中,且成等差数列.(1)求数列的通项公式;(2)设,求数列的前项和.