如图四棱锥,底面四边形ABCD满足条件,,侧面SAD垂直于底面ABCD,,(1)若SB上存在一点E,使得平面SAD,求的值;(2)求此四棱锥体积的最大值;(3)当体积最大时,求二面角A-SC-B大小的余弦值.
若不等式kx2-2x+6k<0(k≠0)。 (1)若不等式解集是{x|x<-3或x>-2},求k的值; (2)若不等式解集是R,求k的取值。
数列满足。 (Ⅰ)若是等差数列,求其通项公式; (Ⅱ)若满足, 为的前项和,求。
已知△的内角所对的边分别为且。 (1)若,求的值; (2)若△的面积,求的值。
设Sn是等差数列{an}的前n项和,已知与的等比中项为,与的等差中项为1,求等差数列{an}的通项。
设. (1)判断函数y=f(x)的奇偶性; (2)求函数y=f(x)的定义域和值域.