已知向量,,函数.(Ⅰ)求函数的最小正周期;(Ⅱ)在中,分别是角的对边,且,,,且,求的值.
(本小题满分12分)在中,,,.(Ⅰ)求的值;(Ⅱ)求的值.
(本小题满分14分)设数列的各项都是正数,且对任意,都有,记为数列的前项和.(Ⅰ)求数列的通项公式;(Ⅱ)若(为非零常数,),问是否存在整数,使得对任意,都有.
已知数列al,a2…,a30,其中al,a2…,a10是首项为1公差为1的等差数列;al0,a11…,a20是公差为d的等差数列;a20,a21…,a30是公差为d2的等差数列(d>0).(Ⅰ)若a20=40,求 d;(Ⅱ)试写出a30关于d的关系式,并求a30的取值范围;(Ⅲ)请依次类推,续写己知数列,把已知数列推广为无穷数列.再提出同(2)类似的问题,并进行研究,你能得到什么样的结论?
已知圆C:是否存在斜率为1的直线,使被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程,若不存在说明理由.
某村计划建造一个室内面积为800m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?