如图,己知直线l与抛物线相切于点P(2,1),且与x轴交于点A,定点B(2,0).(1)若动点M满足,求点M轨迹C的方程:(2)若过点B的直线(斜率不为零)与(1)中的轨迹C交于不同的两点E,F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
设. (1)若在上存在单调递增区间,求的取值范围; (2)当时,在上的最小值为,求在该区间上 的最大值.
已知椭圆G:.过点(m,0),作圆的切线,交椭圆G于A,B两点. (I)求椭圆G的焦点坐标和离心率;(II)将表示为m的函数,并求的最大值.
如图,四棱锥中,⊥平面,是矩形,, 直线与底面所成的角等于30°,, . (1)若∥平面,求的值; (2)当等于何值时,二面角的大小为45°?
在中,角所对的边为,已知。 (1)求的值; (2)若的面积为,且,求的值。
在数列{}中,,并且对任意都有成立,令. (Ⅰ)求数列{}的通项公式;(Ⅱ)求数列{}的前n项和