(本小题满分14分)已知函数定义在区间,对任意,恒有成立,又数列满足(I)在(-1,1)内求一个实数t,使得(II)求证:数列是等比数列,并求的表达式;(III)设,是否存在,使得对任意,恒成立?若存在,求出m的最小值;若不存在,请说明理由。
已知:、、同一平面内的三个向量,其中 (1)若,且,求的坐标; (2)若,且与垂直,求与的夹角.
已知,,且,,求.
已知函数为自然对数的底数). (1)求曲线在处的切线方程; (2)若是的一个极值点,且点,满足条件:. (ⅰ)求的值; (ⅱ)求证:点,,是三个不同的点,且构成直角三角形.
已知:复数,,且,其中、为△ABC的内角,、、为角、、所对的边. (1)求角的大小; (2)若,求△ABC的面积.
已知函数 (1)若在上是增函数,求的取值范围; (2)若在处取得极值,且时,恒成立,求的取值范围.