将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2 a3a4 a5 a6a7 a8 a9 a10……记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1="1." Sn为数列{bn}的前n项和,且满足=1(n≥2).(Ⅰ)证明数列{}成等差数列,并求数列{bn}的通项公式;(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.
(本小题满分12分)已知函数,是的一个极值点,求: (Ⅰ)实数的值; (Ⅱ)在区间[-1,3]上的最大值和最小值。
(本小题满分12分)求当为何实数时,复数满足: (Ⅰ)为实数; (Ⅱ)为纯虚数; (Ⅲ)位于第四象限。
(本小题满分14分)已知,设函数. (Ⅰ)若时,求函数的单调区间; (Ⅱ)若,对于任意的,不等式恒成立,求实数的最大值及此时的值.
(本小题满分15分)已知抛物线上点T(3,t)到焦点的距离为4. (Ⅰ)求,的值; (Ⅱ)设、是抛物线上分别位于轴两侧的两个动点,且(其中为坐标原点). (ⅰ)求证:直线必过定点,并求出该定点的坐标; (ⅱ)过点作的垂线与抛物线交于、两点,求四边形面积的最小值.
(本小题满分15分)如图,已知四棱锥,底面为边长为2的菱形,平面,,是的中点,. (Ⅰ) 证明:; (Ⅱ) 若为上的动点,求与平面所成最大角的正切值.