将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2 a3a4 a5 a6a7 a8 a9 a10……记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1="1." Sn为数列{bn}的前n项和,且满足=1(n≥2).(Ⅰ)证明数列{}成等差数列,并求数列{bn}的通项公式;(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.
已知函数 (1)求的最小正周期和单调区间; (2)若求的取值范围;
设命题:函数的定义域为;命题对一切的实数恒成立,如果命题“且”为假命题,求实数的取值范围.
设为实数,记函数的最大值为. (1)设,求的取值范围,并把表示为的函数; (2)求.
已知函数 (1)若的定义域是,求实数的取值范围及的值域; (2)若的值域是,求实数的取值范围及的定义域
已知函数. (1)求证不论为何实数,总是增函数; (2)确定的值,使为奇函数; (3)当为奇函数时,求的值域.