如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值
已知a、b是正实数,那么,是恒成立的.(1)(3分)由恒成立,说明恒成立;(2)(3分)填空:已知a、b、c是正实数,由恒成立,猜测: ▲ 也恒成立;(3)(2分)如图,已知AB是直径,点P是弧上异于点A和点B的一点,PC⊥AB,垂足为C,AC=a,BC=b,由此图说明恒成立.
小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).
已知:一次函数y=3x-2的图象与某反比例函数的图象的一个公共点的横坐标为1.(1)(3分)求该反比例函数的解析式;(2)(3分)将一次函数y=3x-2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;(3)(2分)请直接写出一个同时满足如下条件的函数解析式:①函数的图象能由一次函数y=3x-2的图象绕点(0,-2)旋转一定角度得到;②函数的图象与反比例函数的图象没有公共点.
为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.(1)(4分)运用列表或画树状图求甲得1分的概率;(2)(3分)这个游戏是否公平?请说明理由.
先化简,再求值:,其中a是方程x2-x=6的根.