某汽车销售公司6月份销售,某厂家的汽车,在一定范围内,每辆汽车的售价与销售量有如下关系:若当月仅售出1辆汽车时,则该辆汽车的进价为27万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆;月底厂家根据销售量一次性返利给销信公司,销售10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,每辆返利1万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为多少万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车(盈利=销售利润+返利)?
如图,△ABC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC于F,交AB于H,交⊙O于G. (1)求证:OF•DE=OE•2OH; (2)若⊙O的半径为12,且OE:OF:OD=2:3:6,求阴影部分的面积.(结果保留根号)
如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根. (1)求抛物线的解析式; (2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD. ①当△OPC为等腰三角形时,求点P的坐标; ②求△BOD 面积的最大值,并写出此时点D的坐标.
如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立. (1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由. (2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G. ①求证:BD⊥CF; ②当AB=4,AD=时,求线段BG的长.
如图,直线y=2x+2与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2. (1)求k的值; (2)点N(a,1)是反比例函数(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.
已知关于x的一元二次方程(x﹣m)2+6x=4m﹣3有实数根. (1)求m的取值范围; (2)设方程的两实根分别为x1与x2,求代数式x1•x2﹣x12﹣x22的最大值.