已知:抛物线.(1)求证:不论a取何值时,抛物线与x轴都有两个不同的交点.(2)设这个二次函数的图象与轴相交于A(,0),B(,0),且、的平方和为3,求a的值.
如图,PA﹑PB是⊙O的切线,A﹑B 是切点,AC是⊙O的直径,∠ACB=70º.求∠P的度数.
如图,在△ABC中,∠C=90º,sinA=,D为AC上一点,∠BDC=45º,DC=6,求AD的长.
如图,在⊙O中,C﹑D为⊙O上两点,AB是⊙O的直径,已知∠AOC=130º,AB=2. 求(1)的长; (2)∠D的度数.
已知二次函数y=x2+2x-1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与轴的交点坐标.
在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).(1)求m的值及点A的坐标;(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.①当点E′落在该二次函数的图象上时,求AA′的长;②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;③当A′B+BE′取得最小值时,求点E′的坐标.