如图,直线过点A(0,4),点D(4,0),直线:与轴交于点C,两直线、相交于点B.(1)求直线的函数关系式;(2)求点B的坐标;(3)求△ABC的面积.
在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C, 那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.
如图,抛物线与x轴交于点A(1,0)和B(3,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)若M为线段OB上一个动点,过点M作MN平行于y轴交抛物线于点N,当点M运动到何处时,四边形ACNB的面积最大?求出此时点M的坐标及四边形ACNB面积的最大值.
如图,对称轴为x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式;(2)设点E(,)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与之间的函数关系式,并写出自变量的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.