利民商店经销某种洗衣粉,年销售量为6000包,每包进价2.80元,销售价3.40元,全年分若干次进货,每次进货x包,已知每次进货运输劳务费62.50元,全年保管费为1.5x元。(1)把该商店经销洗衣粉一年的利润y(元)表示为每次进货量x(包)的函数,并指出函数的定义域;(2)为了使利润最大,每次应该进货多少包?
(本小题满分14分)已知数列的前n项和为,且(1)求数列的通项公式;(2)设数列满足:,且,求证:;(3)求证:。
(本小题满分13分)已知函数(其中x≥1)(1)求函数的反函数;(2)设,求函数最小值及相应的x值;(3)若不等式对于区间上的每一个x值都成立,求实数m的取值范围.
某企业为了适应市场需求,计划从2010年元月起,在每月固定投资5万元的基础上,元月份追加投资6万元,以后每月的追加投资额均为之前几个月投资额总和的20%,但每月追加部分最高限额为10万元. 记第n个月的投资额为(1)求与n的关系式;(2)预计2010年全年共需投资多少万元?(精确到0.01,参考数据:
已知数列的各项均是正数,其前项和为,满足,其中为正常数,且(1)求数列的通项公式;(2)设,数列的前项和为,求证:
(本小题满分12分)数列中,,,(1)若数列为公差为11的等差数列,求;(2)若数列为以为首项的等比数列,求数列的前m项和