已知中,内角的对边的边长为,且(1)求角的大小;(2)若,,求出的面积
如图,垂直于矩形所在的平面,分别是、的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面; (Ⅲ)求二面角的大小.
在两个袋内,分别装有编号为四个数字的张卡片,现从每个袋内任取一张卡片. (Ⅰ)利用卡片上的编号写出所有可能抽取的结果; (Ⅱ)求取出的卡片上的编号之和不大于的概率; (Ⅲ)若第一个袋内取出的卡片上的编号记为,第二个袋内取出的卡片上的编号记为,求的概率.
已知函数在轴右侧的第一个最高点的横坐标为. (Ⅰ)求的值; (Ⅱ)若将函数的图象向右平移个单位后,再将得到的图象上各点横坐标伸长到原来的倍,纵坐标不变,得到函数的图象,求函数的最大值及单调递减区间.
(12分) 对于在区间 [ m,n ] 上有意义的两个函数与,如果对任意,均有,则称与在 [ m,n ] 上是友好的,否则称与在 [ m,n ]是不友好的.现有两个函数与(a > 0且),给定区间. (1)与在给定区间上都有意义,求a的取值范围; (2)与在给定区间上是否友好.
(12分) 已知a > 0,函数,当时,. (1)求常数a、b的值; (2)设且,求的单增区间.