已知函数(1)若求的值;(2)求函数最小正周期及单调递减区间.
椭圆的左、右焦点分别是,过斜率为1的直线与椭圆C相交于A,B两点,且. (1)求椭圆的离心率; (2)设点,,求椭圆C的方程.
已知函数,数列满足,,,e为自然对数的底数. (1)求函数的单调区间; (2)求证:.
在平面直角坐标系中,已知点,点,点. (1)求经过A,B,C三点的圆P的方程; (2)过直线上一点Q,作圆P的两条切线,切点分别为A,B,求证:直线AB恒过定点,并求出定点坐标.
已知数列是递增的等比数列,为其前n项和,且. (1)求数列的通项公式; (2)设数列满足,求其前n项和为.
设圆与圆,动圆C与圆外切,与圆内切. (1)求动圆C的圆心轨迹L的方程; (2)已知点,P为L上动点,求最小值.