如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(I)试判断直线PB与平面EAC的关系(文科不必证明,理科必须证明);(II)求证:AE⊥平面PCD;(III)若AD=AB,试求二面角A-PC-D的正切值.
在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角. (1)若AE⊥PD,E为垂足,求证:BE⊥PD; (2)求异面直线AE与CD所成角的余弦值.
已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC
已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小
已知数列的前项和为,且=,数列中,,点在直线上.(I)求数列的通项和; (II) 设,求数列的前n项和,并求满足的最大正整数.
已知a∈R,解关于x的不等式ax2-(a+1)x+1<0.