已知圆和定点,由圆外一点向圆引切线,切点为,且满足,(Ⅰ)求实数间满足的等量关系;(Ⅱ)求线段长的最小值.
如图,已知AB平面ACD,DE∥AB,△ACD是正三角形,,且F是CD的中点.(Ⅰ)求证AF∥平面BCE;(Ⅱ)设AB=1,求多面体ABCDE的体积.
在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且,.(Ⅰ)求与;(Ⅱ)设数列满足,求的前项和.
(本小题满分12分)已知函数 (是自然对数的底数,).(1)当时,求的单调区间;(2)若在区间上是增函数,求实数的取值范围;(3)证明对一切恒成立.
(本小题满分12分)已知椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切.(1)求椭圆的方程;(2)设直线 与椭圆相交于,两点,以线段, 为邻边作平行四边行,其中顶点在椭圆上,为坐标原点,求的取值范围.
(本小题满分12分)已知数列的前n项和为,且(),(1)求证:数列是等比数列;(2)设数列的前n项和为,,试比较与的大小.