如图,在半径为、圆心角为的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为,(1)按下列要求写出函数的关系式:①设,将表示成的函数关系式;②设,将表示成的函数关系式;(2)请你选用(1)中的一个函数关系式,求出的最大值.
如右图所示,AB为⊙O的直径,BC、CD为⊙O的切线,B、D为切点. (Ⅰ)求证;AD∥OC; (Ⅱ)若⊙O的半径为1,求AD·OC的值.
已知函数. (Ⅰ)当时,求函数的单调区间和极值; (Ⅱ)若在上是单调递增函数,求实数的取值范围.
一盒子中有8个大小完全相同的小球,其中3个红球,2个白球,3个黑球. (Ⅰ)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率; (Ⅱ)若从盒中任取3个球,求取出的3个球中红球个数X的分布列和数学期望.
设函数,对任意实数都有 (Ⅰ)求的值; (Ⅱ)若的值; (Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
已知的展开式中,各项系数和与各项的二项式系数和之比为64. (Ⅰ)求; (Ⅱ)求展开式中的常数项.