学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.
计算:
在平面直角坐标系中,抛物线y=ax2+bx+2的图象过和,与轴交于点,与轴交于另一点,点是原点关于点的对称点,连结、,设点。(1)求抛物线的解析式;(2)连结、,①求的值;②将绕点旋转,在旋转过程中如图(2),线段和的比值会变吗?请说明理由;(3)设点是直线上方的抛物线上一点,连结,以为边作图示一侧的正方形,随着点的运动,正方形的大小,位置也随之改变,当顶点或恰好落在轴上时,直接写出对应点的坐标。
为了绿化城市,美化环境,园林部门计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元,相关资料表明:甲、乙两种树苗的成活率分别为85%,90%。(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用。
如图,已知一次函数的图象与反比例函数的图象分别交于,两点,点是一次函数图象在第一象限部分上的任意一点,过分别向轴, 轴作垂线,垂足分别为,,设矩形的面积为,点为反比例函数图象上任意一点,过分别向轴,轴作垂线,垂足分别为,,设矩形的面积为。 (1)若设点的坐标为,请写出关于的函数关系式,并求的最大值.(2)观察图形,通过确定的取值范围,比较,的大小
联合国规定每年的月日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后制成了下面的两个统计图.其中:
(1)该校课外活动小组共调查了多少人?并补全上面的条形统计图;(2)如果该校共有师生2400人,那么随手乱扔垃圾的约有多少人?