学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线所对应的函数解析式;(2)求△ABD的面积(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以45元的价格销售,平均每天销售105箱;每箱以50元的价格销售,平均每天销售90箱.假定每天销售量y(箱)与销售价x(元/箱)之间满足一次函数关系式.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为_______(结果保留根号);②的长为_________(结果保留π);③试判断直线CD与⊙O的位置关系,并说明理由.
已知,□ABCD的两边AB、AD的长是关于X的方程x2-mx+=0的两个实根.(1)当为何值时,四边形ABCD是菱形?求出这时菱形的边长.(2)若AB的长为2,那么□ABCD的周长是多少?
如图,自来水公司的主管道从A小区向北偏东60°方向直线延伸,测绘员在A处测得要安装自来水的M小区在A小区北偏东30°方向,测绘员沿主管道步行8000米到达C处,测得小区M位于C的北偏西60°方向,请你(不写作法,保留作图痕迹)找出支管道连接点N,使到该小区铺设的管道最短,并求出AN的长.