学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.
某商店一天可销售某商品20套,每套盈利40元。为了尽快减少库存,决定采取降价措施。调查发现每套商品每降1元,则平均每天多销售2套.(1)若降价5元时,商店每天可售出该商品 套;可获 元利润;(2)若每天盈利1200元,则应降价多少元?
如图,一转盘被等分成三个扇形,上面分别标有-1,1,2,指针位置固定,转动转盘后任其自由停止后,某个扇形会恰好停在指针所指的位置,得到这个扇形上相应的数.若指针恰好指在等分线上,则需重新转动转盘.(1)若小静转动转盘一次,则她得到负数的概率为 ;(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.请用列表法(或画树状图)求出两人“不谋而合”的概率.
如图,在边长为1的小正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别为A(-2,3)、B(-3,1).△AOB绕点O顺时针旋转90°后得到△A1OB1。(1)画出△A1OB1;(2)点A1的坐标为 ;(3)点A旋转到点A1所经过的路线长为_____________.(结果保留π)
已知关于的方程-(k+2)+2k=0(1)说明:无论k取何值,方程总有实数根;(2)若方程有两个相等的实数根,求出方程的根.
先化简,再求值:,其中a=-1,b=.