学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.
如图,四边形ABCD是平行四边形,以对角线BD为直径作⊙O,分别于BC、AD相交于点E、F.(1)求证四边形BEDF为矩形.(2)若BD2=BE·BC,试判断直线CD与⊙O的位置关系,并说明理由.
对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似。例如,如图①,△ABC∽△A’B’C’且沿周界ABCA与A’B’C’A’环绕的方向相同,因此△ABC 与△A’B’C’互为顺相似;如图②,△ABC∽△A’B’C’,且沿周界ABCA与 A’B’C’A’环绕的方向相反,因此△ABC 与△A’B’C’互为逆相似。 (1)根据图I、图II和图III满足的条件,可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ。其中,互为顺相似的是 ;互为逆相似的是 。(填写所有符合要求的序号) (2)如图③,在锐角△ABC中,ÐA<ÐB<ÐC,点P在△ABC的边上(不与点A、B、C重合)。过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似。请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由。
已知二次函数 (a、m为常数,且a¹0)。 (1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点; (2)设该函数的图像的顶点为C,与x轴交于A、B两点,与y轴交于点D。 ①当△ABC的面积等于1时,求a的值: ②当△ABC的面积与△ABD的面积相等时,求m的值。
如图,AD是圆O的切线,切点为A,AB是圆O的弦。过点B作BC//AD,交圆O于点C,连接AC,过点C作CD//AB,交AD于点D。连接AO并延长交BC于点M,交过点C的直线于点P,且ÐBCP=ÐACD。 (1)判断直线PC与圆O的位置关系,并说明理由: (2)若AB=9,BC=6,求PC的长。
小丽驾车从甲地到乙地。设她出发第x min时的速度为y km/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系。 (1)小丽驾车的最高速度是 km/h; (2)当20£x£30时,求y与x之间的函数关系式,并求出小丽出发第22 min时的速度; (3)如果汽车每行驶100 km耗油10 L,那么小丽驾车从甲地到乙地共耗油多少升?