一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为(时),两车之间的距离为(千米),图中的折线表示从两车出发至快车到达乙地过程中与之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中关于的函数的大致图象.
已知点 E 为正方形 ABCD 的边 AD 上一点,连接 BE ,过点 C 作 CN ⊥ BE ,垂足为 M ,交 AB 于点 N .
(1)求证: ΔABE ≅ ΔBCN ;
(2)若 N 为 AB 的中点,求 tan ∠ ABE .
将一副三角板 Rt Δ ABD 与 Rt Δ ACB (其中 ∠ ABD = 90 ° , ∠ D = 60 ° , ∠ ACB = 90 ° , ∠ ABC = 45 ° ) 如图摆放, Rt Δ ABD 中 ∠ D 所对直角边与 Rt Δ ACB 斜边恰好重合.以 AB 为直径的圆经过点 C ,且与 AD 交于点 E ,分别连接 EB , EC .
(1)求证: EC 平分 ∠ AEB ;
(2)求 S △ ACE S △ BEC 的值.
在 ΔABC 中, M 是 AC 边上的一点,连接 BM .将 ΔABC 沿 AC 翻折,使点 B 落在点 D 处,当 DM / / AB 时,求证:四边形 ABMD 是菱形.
已知 ΔABC ,以 AB 为直径的 ⊙ O 分别交 AC 于 D , BC 于 E ,连接 ED ,若 ED = EC .
(1)求证: AB = AC ;
(2)若 AB = 4 , BC = 2 3 ,求 CD 的长.
如图,四边形 ABC 内接于 ⊙ O , AB = AC , AC ⊥ BD ,垂足为 E ,点 F 在 BD 的延长线上,且 DF = DC ,连接 AF 、 CF .
(1)求证: ∠ BAC = 2 ∠ CAD ;
(2)若 AF = 10 , BC = 4 5 ,求 tan ∠ BAD 的值.