解方程组:
解方程(本题共4小题,每小题4分,共16分)(1)x2-2x-99=0(2)3x2-6x+1=0(3)x(x+2)=5x+10(4)(x-2)2=(2x+3)2
如图,已知抛物线与轴的一个交点为A(3,0),与轴的交点为B(0,3),其顶点为C,对称轴为.(1)求抛物线的解析式:(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.
在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F.(1)当AB=AC时,(如图1),①∠EBF= °②探究线段BE与FD的数量关系,并加以证明;(2)当AB=kAC时(如图2),求的值(用含k的式子表示).
某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价(元/台)与采购数量(台)满足(,为整数);冰箱的采购单价(元/台)与采购数量(台)满足(,为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.
已知关于的一元二次方程,其中、、分别为△ABC三边的长.(1)如果是方程的根,试判断△ABC的形状,并说明理由:(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.