在一个特定时段内,以点E为中心的7n mile以内海域被设为警戒水域.点E正北55n mile处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40 n mile的位置B,经过40分钟又测得该船已行驶到点A北偏东 (其中,)且与点A相距10n mile的位置C.(I)求该船的行驶速度(单位:n mile /h);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
(本小题满分12分)某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数. (1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
本小题满分12分)已知函数,(1)利用函数单调性的定义判断函数在区间[2,6]上的单调性;(2)求函数在区间[2,6]上的最大值和最小值.
(本小题满分12分)已知函数,求函数的定义域,并判断它的奇偶性。
(本小题满分12分)(1)计算 (2)解不等式
(本小题满分12分)已知集合(1)求 (2)若,求a的取值范围.