(本小题满分12分)已知集合(1)求 (2)若,求a的取值范围.
(本小题满分12分)已知m>1,直线,椭圆C:,、分别为椭圆C左、右焦点.(Ⅰ)当直线过右焦点时,求直线的方程;(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
(本小题满分12分)某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)从频率分布直方图中,估计本次考试的平均分;(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.
(本小题满分12分)如图, 在四面体ABOC中, , 且.(Ⅰ)设为为的中点, 证明: 在上存在一点,使,并计算;(Ⅱ)求二面角的平面角的余弦值。
(本小题满分12分) 在△ABC中,角A、B、C的对边分别为a、b、c, 向量 p="(sinA,b+c), " q=(a-c,sinC-sinB),满足|p +q |="|" p-q |.(Ⅰ) 求角B的大小;(Ⅱ)设m=(sin(C+),),n="(2k,cos2A)" (k>1), m·n有最大值为3,求k的值.
(本小题满分14分)己知函数.(1) 求函数的定义域;(2) 求函数的增区间;(3) 是否存在实数,使不等式在时恒成立?若存在,求出实数的取值范围;若不存在,请说明理由.