在中,分别是角的对边,,,且(1)求角的大小; (2)设,且的最小正周期为,求在上的最大值和最小值,及相应的的值。
(本小题共12分)已知函数,(1)若对于定义域内的恒成立,求实数的取值范围;(2)设有两个极值点,且,求证:;(3)设若对任意的,总存在,使不等式成立,求实数的取值范围.
(本小题共12分)如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).(1)若动点M满足,求点M的轨迹C;(2)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
(本小题共12分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.(1)求证:平面PQB⊥平面PAD; (2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.
(本小题共12分)现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
(1)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
(2)若对在[15,25) ,[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ,求随机变量的分布列。附:
(本小题共12分)已知△ABC的角A,B,C的对边依次为a,b,c,若满足,(1)求∠C大小;(2)若c=2,且△ABC为锐角三角形,求a+b取值范围。