(本小题满分12分)设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为.求:(Ⅰ)求实数的取值范围;(Ⅱ)求圆的方程;(Ⅲ)问圆是否经过某定点(其坐标与b 无关)?请证明你的结论.
.(12分)如图,在Rt△ABC中,∠C=90º,BE平分∠ABC交AC于点E,点D在AB上, DE⊥EB (1)求证:AC是△BDE的外接圆的切线; (2)若AD=6,AE=6,求BC的长。
(12分) 某制造商发现饮料瓶大小对饮料公司的利润有影响,于是该公司设计下面问题,问瓶子的半径多大时,能够使每瓶的饮料利润最大?瓶子的半径多大时,能使饮料的利润最小?问题:若饮料瓶是球形瓶装, 球形瓶子的制造成本是分,其中r(单位:cm)是瓶子的半径.已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为5cm.
(12分)如图,矩形ABCD中,E是BC中点,DF⊥AE交AE延长线于F,AB="a" ,BC=b, 求证:DF=
(12分)已知A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若A∪B=A,求m的取值范围。
(10分) 已知函数在区间上有最小值-2,求实数a 的值