(本小题满分10分)如图,在直三棱柱中,、分别是、的中点,点在上,. 求证:(1)EF∥平面ABC; (2)平面平面.
在△中,角所对的边分别为,已知,,. (1)求的值; (2)求的值.
已知等差数列{}的公差,,且,,成等比数列. (1)求数列{}的公差及通项; (2)求数列的前项和.
已知f(x)=. (1)当a=1时,求f(x)≥x的解集; (2)若不存在实数x,使f(x)<3成立,求a的取值范围.
在直角坐标系中,曲线C1的参数方程为:(为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2是极坐标方程为:, (1)求曲线C2的直角坐标方程; (2)若P,Q分别是曲线C1和C2上的任意一点,求的最小值.
已知和相交于A、B两点,过A点作切线交于点E,连接EB并延长交于点C,直线CA交于点D, (1)当点D与点A不重合时(如图1),证明:ED2=EB·EC; (2)当点D与点A重合时(如图2),若BC=2,BE=6,求的直径长.