选修4-4: 坐标系与参数方程在极坐标系中, 已知圆C的圆心C(), 半径r =.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若 α ∈, 直线的参数方程为为参数), 直线交圆C于A、 B两点, 求弦长|AB|的取值范围.
已知(,为此函数的定义域)同时满足下列两个条件:①函数在内单调递增或单调递减;②如果存在区间,使函数在区间上的值域为,那么称,为闭函数 (1)判断函数是否为闭函数?并说明理由; (2)求证:函数()为闭函数; (3)若是闭函数,求实数的取值范围
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:km/h)是车流密度(单位:辆/km)的函数,当桥上的车流密度达到180辆/km时,造成堵塞,此时车速度为0;当车流密度不超过30辆/km时,车流速度为50km/h,研究表明:当时,车流速度v是车流密度的一次函数. (1)当时,求函数的表达式 (2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/h)可以达到最大,并求出最大值。
已知函数是奇函数 (1)求实数的值 (2)判断函数在R上的单调性并用定义法证明 (3)若函数的图像经过点,这对任意不等式恒成立,求实数的范围。
已知函数f(x)=4x-2x+1+3,的定义域为M (1)求的定义域 (2)当时,求函数f(x)的值域
设全集,集合=,=。 (1)求; (2)若集合,满足,求实数的取值范围.