本小题满分8分已知函数,求函数的定义域,判断函数的奇偶性,并说明理由.
已知函数。(Ⅰ)当时,证明函数不是奇函数;(Ⅱ)判断函数的单调性,并利用函数单调性的定义给出证明;(Ⅲ)若是奇函数,且在时恒成立,求实数的取值范围。
已知函数是定义在上的偶函数,且当时,。(Ⅰ)求及的值;(Ⅱ)求函数在上的解析式;(Ⅲ)若关于的方程有四个不同的实数解,求实数的取值范围。
已知函数。(Ⅰ)当时,利用函数单调性的定义证明在区间上是单调减函数;(Ⅱ)若函数在区间上是单调增函数,求实数的取值范围。
某种储蓄按复利(把前一期的利息和本金加在一起作本金,再计算下一期的利息)计算利息,若本金为元,每期利率为,设存期为,本利和(本金加上利息)为元。(Ⅰ)写出本利和随存期变化的函数解析式;(Ⅱ)如果存入本金元,每期利率为,试计算期后的本利和。(参考数据:)
已知函数的定义域为集合,函数的值域为集合。(Ⅰ)写出集合和;(Ⅱ)若全集,求。