设同时满足条件:① ;② (,是与无关的常数)的无穷数列叫“嘉文”数列.已知数列的前项和满足: (为常数,且,). (Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值,并证明此时为“嘉文”数列.
已知函数(I)求函数的单调增区间;(II)当时,求函数的最大值及相应的值.
在集合内任取一个元素,能使代数式的概率是多少?
已知函数的图像的一部分如图所示.(Ⅰ)求函数的解析式;(Ⅱ)求函数的最值;
已知函数 (R).(1) 若,求函数的极值;(2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。
某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别写出用表示和用表示的函数关系式(写出函数定义域);(2)怎样设计能使S取得最大值,最大值为多少?