在平面直角坐标系 x O y 中,求过椭圆 x = 5 cos φ y = 3 sin φ φ 为参数 的右焦点且与直线 x = 4 - 2 t y = 3 - t ( t 为参数)平行的直线的普通方程。
抛物线y=-与过点M(0,-1)的直线l相交于A、B两点,O为坐标原点,若直线OA和OB斜率之和为1,求直线l的方程.
已知圆C过定点A(0,p)(p>0),圆心C在抛物线x2=2py上运动,若MN为圆C在x轴上截得的弦,设|AM|=m,|AN|=n,∠MAN=θ.(1)当点C运动时,|MN|是否变化?写出并证明你的结论?(2)求+的最大值,并求取得最大值时θ的值和此时圆C的方程.若不存在,说明理由
△中,内角的对边分别为,已知成等比数列, 求(1)的值; (2)设,求的值.
抛物线x2=4y的焦点为F,过点(0,-1)作直线l交抛物线A、B两点,再以AF、BF为邻边作平行四边形FABR,试求动点R的轨迹方程.
已知抛物线y2=4ax(0<a<1)的焦点为F,以A(a+4,0)为圆心,|AF|为半径在x轴上方作半圆交抛物线于不同的两点M和N,设P为线段MN的中点,(Ⅰ)求|MF|+|NF|的值;(Ⅱ)是否存在这样的a值,使|MF|、|PF|、|NF|成等差数列?如存在,求出a的值,