S n + k + S n - k = 2 ( S n + S k ) 设 M 为部分正整数组成的集合,数列 a n 的首项 a 1 = 1 ,前 n 项和为 S n .已知对任意整数 k 属于 M ,当 n > k 时, S n + k + S n - k = 2 ( S n + S k ) 都成立。
(1)设 M = 1 , a 2 = 2 ,求 a 5 的值; (2)设 M = 3 , 4 ,求数列 a n 的通项公式。
已知,计算: (1); (2).
已知集合,集合. (1)求,; (2)设,若,求实数的取值范围.
对定义在上,并且同时满足以下两个条件的函数称为函数。 ①对任意的,总有; ②当时,总有成立。 已知函数与是定义在上的函数。 (1)试问函数是否为函数?并说明理由; (2)若函数是函数,求实数的值; (3)在(2)的条件下,讨论方程解的个数情况。
已知,, (1)求的最大值; (2)求的最小值。
定义在上的函数当时,,且对任意的有。 (1)求证:, (2)求证:对任意的,恒有; (3)若,求的取值范围。