已知函数,(且)。(1)设,令,试判断函数在上的单调性并证明你的结论;(2)若且的定义域和值域都是,求的最大值;(3)若不等式对恒成立,求实数的取值范围;
已知求的值.
已知角的终边在直线上,求的值.
如图,过抛物线 y 2 = 2 p x p > 0 的焦点F的直线与抛物线相交于 M 、 N 两点,自 M 、 N 向准线L作垂线,垂足分别为 M 1 、 N 1
(Ⅰ)求证: F M 1 ⊥ F M 2 : (Ⅱ)记 ∆ F M M 1 、 ∆ F M 1 N 1 、 ∆ F N N 1 的面积分别为 S 1 , S 2 , S 3 ,试判断 S 2 2 = 4 S 1 S 2 是否成立,并证明你的结论.
已知关于x的函数f(x)=+bx2+cx+bc,其导函数为f+(x).令g(x)=∣f (x) ∣,记函数g(x)在区间[-1、1]上的最大值为M. (Ⅰ)如果函数f(x)在x=1处有极值-,试确定b、c的值: (Ⅱ)若∣b∣>1,证明对任意的c,都有M>2: (Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值。
已知 a n 是一个公差大于0的等差数列,且满足 a 3 a 6 =55, a 2 + a 7 =16. (Ⅰ)求数列 a n 的通项公式: (Ⅱ)若数列 a n 和数列 b n 满足等式: a n = b 1 2 + b 2 2 2 + b 3 2 3 + … b n 2 n n 为正整数 ,求数列 b n 的前 n 项和 S n