(本题满分15分)函数,是它的导函数.(Ⅰ)当时,若在区间存在单调递增区间,求的取值范围。(Ⅱ)当时,恒成立,求的最小值.
(本小题满分10分)选修4-5:不等式选讲已知.(Ⅰ)解不等式; (Ⅱ)对于任意的,不等式恒成立,求的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程以平面直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为(1,-5),点的极坐标为(4,),若直线过点,且倾斜角为,圆以为圆心,4为半径.(Ⅰ)求直线的参数方程和圆的极坐标方程;(2)试判定直线与圆的位置关系.
(本小题满分10分)选修4—1:几何证明选讲切线与圆切于点,圆内有一点满足,的平分线交圆于,,延长交圆于,延长交圆于,连接.(Ⅰ)证明://; (Ⅱ)求证:.
(本小题满分12分) 已知函数. (1)若曲线在处的切线为,求的值;(2)设,,证明:当时,的图象始终在的图象的下方;(3)当时,设,(为自然对数的底数),表示导函数,求证:对于曲线上的不同两点,,,存在唯一的,使直线的斜率等于.
(本小题满分12分)已知垂直平分线与交于Q点.(1)求Q点的轨迹方程;(2)已知点 A(-2,0), 过点且斜率为()的直线与Q点的轨迹相交于两点,直线,分别交直线于点,,线段的中点为,记直线的斜率为.求证:为定值.