(本题满分14分)已知数列的首项,且当时, ,数列满足 (Ⅰ)求证:数列是等差数列,并求的通项公式;(Ⅱ) 若(),如果对任意,都有,求实数 的取值范围.
设是不等式的解集,整数。(1)记使得“成立的有序数组”为事件A,试列举A包含的基本事件;(2)设,求的分布列及其数学期望。
已知是否存在自然数,使对任意,都有整除?如果存在,求出的最大值,并证明;若不存在,说明理由.
、某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(2)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率. (3)求这名学生在上学路上因遇到红灯停留的总时间的分布列、期望及方差
已知的展开式记为,的展开式记为.已知的奇数项的二项式系数的和比的偶数项的二项式系数的和大496.(1)求中二项式系数最大的项;(2)求中的有理项;(3)确定实数的值,使与中有相同的项,并求出相同的项.
从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?(1)男、女同学各2名;(2)男、女同学分别至少有1名;(3)在(2)的前提下,男同学甲与女同学乙不能同时选出.