、某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(2)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率. (3)求这名学生在上学路上因遇到红灯停留的总时间的分布列、期望及方差
(本小题满分12分) 已知 (1)求的值; (2)求的值.
设椭圆的左,右焦点为,,(1,)为椭圆上一点,椭圆的 长半轴长等于焦距,曲线C是以坐标原点为顶点,以为焦点的抛物线,自引直线交曲线C于P,Q两个不同的交点,点P关于轴的对称点记为M,设. (1)求椭圆方程和抛物线方程; (2)证明:; (3)若求|PQ|的取值范围
(12分)已知一四棱锥的三视图,E是侧棱PC上的动点. (1)求四棱锥的体积; (2)若E点分PC为PE:EC=2:1,求点P到平面BDE的距离; (3)若E点为PC的中点,求二面角D-AE-B的大小.
(12分)等比数列{}的前n项和为, 已知对任意的,点, 均在函数且均为常数)的图像上. (1)求r的值; (2)当b=2时,记求数列的前项和
(12分) 已知集合A={}, 集合B={}. (1)在集合A中任取一个元素P,求P∈B的概率; (2)若集合A,B中元素的,则在集合A中任取一个元素P,求P∈B的概率.