某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次, 如果每次拖7节车厢,则每日能来回10次.(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。
(本小题满分12分)已知全集,集合,,. (1)求,; (2)若,求的取值范围.
已知偶函数,对任意,恒有。求: (1),,的值; (2)的表达式; (3)在上的最值。
如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,M是BD的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示. (1)求证:ME∥平面ABC; (2)试问在棱DC上是否存在点N,使NM⊥平面BDE? 若存在,确定点N的位置;若不存在,请说明理由.
已知的顶点A(0,1),AB边上的中线CD所在直线方程为,AC边上的高BH所在直线方程为. (1)求的项点B、C的坐标; (2)若圆M经过不同的三点A、B、P(m、0),且斜率为1的直线与圆M相切于点P 求:圆M的方程.
在三棱锥中,是边长为的正三角形,平面⊥平面,,、分别为、的中点. (1)证明:⊥; (2)求三棱锥的体积.