(本题满分15分)抛物线的方程是,曲线与关于点 对称.(Ⅰ)求曲线的方程; (Ⅱ)过点(8,0)的直线交曲线于M、N两点,问在坐标平面上能否找到某个定点,不论直线如何变化,总有。若找不到,请说明理由;若能找到,写出满足要求的所有的点的坐标.
已知向量. (Ⅰ)若,求的值; (Ⅱ)若,求的值.
选修4—5:《不等式选讲》 已知、、c为正数. (1)若直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,试求的最小值; (2)求证:.
选修4-4:极坐标与参数方程 已知曲线的参数方程是,直线的参数方程为. (1)求曲线与直线的普通方程; (2)若直线与曲线相交于两点,且,求实数的值.
选修4-1:几何证明选讲 如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED. (1)证明:CD∥AB; (2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
已知函数在处的切线与直线垂直,函数. (1)求实数的值; (2)若函数存在单调递减区间,求实数b的取值范围; (3)设是函数的两个极值点,若,求的最小值.