在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论.
设抛物线()的焦点为F,经过点 F的直线交抛物线于A、B两点.点C在抛物线的准线上,且BC∥X轴.证明直线AC经过原点O.
已知抛物线(为非零常数)的焦点为,点为抛物线上一个动点,过点且与抛物线相切的直线记为.(1)求的坐标;(2)当点在何处时,点到直线的距离最小?
如图,正方形的边长为1,,分别为边,上的点.当的周长为2时,求的大小.
已知直线,是,之间的一定点,并且点到,的距离分别为,.是直线上一动点,作.且使与直线交于点,求面积的最小值.
已知,,求的值.