(本小题满分15分)已知等比数列的前n项和为,且满足.(Ⅰ) 求的值及数列的通项公式;(Ⅱ)若数列满足,求数列的前项和.
(本小题满分12分)数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,数列的前项和为,求证:.
设集合,集合,集合中满足条件“”的元素个数记为.(1)求和的值;(2)当时,求证:.
如图,平行四边形所在平面与直角梯形所在平面互相垂直,且,为中点.(1)求异面直线与所成的角;(2)求平面与平面所成的二面角(锐角)的余弦值.
已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数).若直线与圆相切,求正数的值.
已知矩阵,计算.