如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交轴于A、B两点,开口向下的抛物线经过点A、B,且其顶点在⊙C上.(1)求出A、B两点的坐标;(2)试确定此抛物线的解析式;(3)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
(本题满分为14分)平面直角坐标系中,正方形AOBC如图所示,点C的坐标为(a,a),其中a使得式子有意义,反比例函数的图象经过点C. (1)求反比例函数解析式. (2)若有一点D自A向O运动,且满足AD2=OD·AO,求此时D点坐标. (3)若点D在AO上、G为OB的延长线上的点,AD=BG,连接AB交DG于点H,写出AB-2HB与AD之间的数量关系(直接写出不需证明). (4)如图,点E为正方形AOBC的OB边一点,点F为BC上一点且∠CAE=∠FEA=60°,求直线EF的解析式.
(本题满分为8分)某市区东西走向的青年路与南北走向的江阴路相交于O处,甲沿着青年路以4m/s的速度由西向东走,乙沿着江阴路以3m/s的速度由南向北走,当乙走到O点以北50m处时,甲恰好到达点O处,当行走过程中两人相距85m时,求两人各自的位置。
(本题满分为8分)如图,一任意四边形用三种不同的方法把它分割成六块、六块、四块,请根据图形分割的意图,将它们分别重新拼成大小不同的长方形。