(本小题满分12分)如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.(1)设是的中点,证明:平面;(2)在内是否存在一点,使平面,若存在,请找出点M,并求FM的长;若不存在,请说明理由。
2013年4月14日,CCTV财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如下表:
(Ⅰ)根据表中数据,求出,的值,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关?(Ⅱ)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少?参考数据:
参考公式:
在中,角的对边分别为,已知:,且.(Ⅰ)若,求边; (Ⅱ)若,求的面积.
设函数,若时,有极小值,(1)求实数的取值;(2)若数列中,,求证:数列的前项和;(3)设函数,若有极值且极值为,则与是否具有确定的大小关系?证明你的结论.
定义:对于两个双曲线,,若的实轴是的虚轴,的虚轴是的实轴,则称,为共轭双曲线.现给出双曲线和双曲线,其离心率分别为.(1)写出的渐近线方程(不用证明);(2)试判断双曲线和双曲线是否为共轭双曲线?请加以证明.(3)求值:.
2013年我国汽车拥有量已超过2亿(目前只有中国和美国超过2亿),为了控制汽车尾气对环境的污染,国家鼓励和补贴购买小排量汽车的消费者,同时在部分地区采取对新车限量上号.某市采取对新车限量上号政策,已知2013年年初汽车拥有量为(=100万辆),第年(2013年为第1年,2014年为第2年,依次类推)年初的拥有量记为,该年的增长量和与的乘积成正比,比例系数为其中=200万.(1)证明:;(2)用表示;并说明该市汽车总拥有量是否能控制在200万辆内.