设数列{an}的各项都是正数,且对任意n∈N*,都有+…+=,记Sn为数列{an}的前n项和.(1)求数列{an}的通项公式;(2)若bn=3n+(-1)n-1λ·2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn.
有一块三角形的铁板余料,如图1所示.已知.工人师傅计划用它加工成一个无盖直三棱柱型水箱,设计方案为:将图中的阴影部分切去,再把它沿虚线折起,请计算水箱的高为多少时,水箱的容积最大?最大容积是多少?
已知函数在区间上的最小值为4,求的值.
已知函数的导数.求函数在区间上的最小值与最大值.
将数列 { a n } 中的所有项按每一行比上一行多一项的规则排成下表: a 1
a 2 a 3
a 4 a 5 a 6
a 7 a 8 a 9 a 10
…… 记表中的第一列数 a 1 , a 2 , a 4 , a 7 ……构成的数列为 { b n } , b 1 = a 1 = 1 , S n 为数列 { b n } 的前 n 项和,且满足 2 b n b n S n - S n 2 = 1 ( n ≥ 2 )
(I)证明数列 { 1 S n } 成等差数列,并求数列 { b n } 的通项公式; (II)上表中,若从第三行起,每一行中的数从左到右的顺序均构成等比数列,且公比为同一个正数,当 a 31 = - 4 91 时,求上表中第 k ( k ≥ 3 ) 行所有项的和
(本小题满分13分)已知定义在R上的函数(a,b,c,d为实常数)的图象关于原点对称,且当x=1时f(x)取得极值.(Ⅰ)求函数f(x)的解析式;(Ⅱ)证明:对任意∈[-1,1],不等式成立;(Ⅲ)若函数在区间(1,∞)内无零点,求实数m的取值范围.