已知椭圆C:=1(a>b>0)的两个焦点F1,F2和上下两个顶点B1,B2是一个边长为2且∠F1B1F2为60°的菱形的四个顶点.(1)求椭圆C的方程;(2)过右焦点F2的斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE,AF分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′,求证: k·k′为定值.
已知命题方程在上有解,命题函数的值域为,若命题“或”是假命题,求实数的取值范围.
已知函数,其中是自然对数的底数,.(1)若,求曲线在点处的切线方程;(2)若,求的单调区间;(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.
已知函数.(1)若是函数的极值点,求的值;(2)求函数的单调区间.
设函数,,函数的图象与轴的交点也在函数的图象上,且在此点有公切线.(Ⅰ)求,的值;(Ⅱ)试比较与的大小.
已知向量,,且,其中A、B、C是ABC的内角,分别是角A,B,C的对边。(Ⅰ)求角C的大小;(Ⅱ)求的取值范围;