(本小题满分12分)在一次数学考试中,第21题和第22题为选做题. 规定每位考生必须且只须在其中选做一题. 设4名考生选做每一道题的概率均为.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为,求的概率分布及数学期望. 的解析
如果的展开式中,第四项和第七项的二项式系数相等,求: (1)展开式的中间项; (2)展开式中所有的有理项.
圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ. (1)把圆O1和圆O2的极坐标方程化为直角坐标方程; (2)求经过圆O1、圆O2交点的直线的直角坐标方程.
在极坐标系中,已知曲线C1:ρ=12sinθ,曲线C2:ρ=12cos. (1)求曲线C1和C2的直角坐标方程; (2)若P、Q分别是曲线C1和C2上的动点,求PQ的最大值.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为,直线的极坐标方程为ρcos=a,且点A在直线上. (1)求a的值及直线的直角坐标方程; (2)圆C的参数方程为,(α为参数),试判断直线与圆的位置关系.
在极坐标系中,求点到直线ρsinθ=2的距离.