已知椭圆的中心在原点,焦点在轴上,离心率,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与曲线的交点为、,求面积的最大值.
已知数列中,求通项公式求前n项和
设数列,,,。。。。。,。。。。。(a,b为大于零的常数,且a)(1) 求证数列为等比数列。(2)若数列又为等差数列,求b的值。
设直线与椭圆相交于两个不同的点. (1)求实数的取值范围;(2)当时,求
设命题“关于的x方程有两个实数根”,命题“关于x的不等式对恒成立”,若为假,为假,求实数的取值范围.
在锐角中,a,b,c分别为角A,B,C所对的的边,且 (1)确定角C的大小。(2)若,求a+b的值。