(1)(2)求值
如图,已知空间四边形中,,是的中点. 求证:(1)平面CDE; (2)平面平面. (3)若G为的重心,试在线段AE上确定一点F,使得GF//平面CDE.
设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为的直线交椭圆M于A,B两点。(Ⅰ)求椭圆M的方程;(Ⅱ)求证| AB | =;(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB| + |CD|的最小值。
已知是公差为的等差数列,它的前项和为, 等比数列的前项和为,,,(1)求公差的值;(2)若对任意的,都有成立,求的取值范围(3)若,判别方程是否有解?说明理由
据行业协会预测:某公司以每吨10万元的价格销售某种化工产品,可售出该产品1000吨,若将该产品每吨的价格上涨,则销售量将减少,且该化工产品每吨的价格上涨幅度不超过,(其中为正常数)(1)当时,该产品每吨的价格上涨百分之几,可使销售的总金额最大?(2)如果涨价能使销售总金额比原销售总金额多,求的取值范围.
在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关?你所得到的结论在什么范围内有效?