如图,在地正西方向的处和正东方向的处各有一条正北方向的公路和,现计划在和路边各维修一个物流中心和,为缓解交通压力,决定修建两条互相垂直的公路和,设.(1)为减少对周边区域的影响,试确定的位置,使和的面积之和最小;(2)为节省建设成本,试确定的位置,使的值最小.
在⊿中,内角的对边分别是,已知. (Ⅰ)试判断⊿的形状;(Ⅱ)若求角B的大小.
已知数列中,,. (Ⅰ)求的通项公式; (Ⅱ)若数列中,,, 证明:,.
已知椭圆的左、右焦点分别为,.过的直线交椭圆于两点,过的直线交椭圆于两点,且,垂足为. (Ⅰ)设点的坐标为,证明:; (Ⅱ)求四边形的面积的最小值.
设函数. (Ⅰ)证明:的导数; (Ⅱ)若对所有都有,求的取值范围.
已知函数。 (Ⅰ)设,讨论的单调性; (Ⅱ)若对任意恒有,求的取值范围。