设函数.(Ⅰ)证明:的导数;(Ⅱ)若对所有都有,求的取值范围.
如图,在直三棱柱中,⊥,,,,是的中点,求直线与平面所成角的正弦值.
已知函数.(1)求的解析式;(2)求的减区间.
设函数,表示的导函数.(1)求函数的单调递增区间;(2)当为偶数时,若函数的图象恒在函数的上方,求实数的取值范围;(3)当为奇数时,设,数列的前项和为,证明不等式对一切正整数均成立,并比较与的大小.
已知椭圆的方程为,两点,为椭圆的焦点,点在椭圆上,且.(1)求椭圆的标准方程;(2)如图已知椭圆的内接平行四边形的一组对边分别过椭圆的焦点、,求该平行四边形面积的最大值.
为治理雾霾,环保部门加大对企业污染物排放的监管力度,某企业决定对一条价值60万元的老旧流水线进行升级改造,既要减少染污的排放,更要提高该流水线的生产能力,从而提高产品附加值,预测产品附加值(单位:万元)与投入改造资金(单位:万元)之间的关系满足:①与成正比例;②当时,;③改造资金满足不等式,其中为常数,且.(1)求函数的解析式,并求出其定义域;(2)问投入改造资金取何值时,产品附加值达到最大?