(本小题满分16分)某仓库为了保持库内温度,四周墙上装有如图所示的通风设施,该设施的下部是等边三角形ABC,其中AB=2米,上部是半圆,点E为AB的中点.△EMN是通风窗,(其余部分不通风)MN是可以沿设施的边框上下滑动且保持与AB平行的伸缩杆(MN和AB不重合).(1)设MN与C之间的距离为x米,试将△EMN的面积S表示成的函数;(2)当MN与C之间的距离为多少时,△EMN面积最大?并求出最大值.
(本小题满分12分) 在四边形ABCD中,,且,沿将其折成一个二面角,使. (1)求折后与平面所成的角的余弦值; (2)求折后点到平面的距离.
(本小题满分12分) 已知函数在处有极小值. (1)求函数的单调区间; (2)求函数在闭区间上的最大值和最小值.
(本小题满分10分) 设等比数列的前项和为.已知,求和.
设函数(a、b、c、d∈R)满足: 对任意都有,, (1)的解析式; (2)当时,证明:函数图象上任意两点处的切线不可能互相垂直; (3)设,证明:时,
如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点. ⑴求异面直线PD与AE所成角的大小; ⑵求证:EF⊥平面PBC ; ⑶求二面角F—PC—B的大小..