(本小题满分16分)某仓库为了保持库内温度,四周墙上装有如图所示的通风设施,该设施的下部是等边三角形ABC,其中AB=2米,上部是半圆,点E为AB的中点.△EMN是通风窗,(其余部分不通风)MN是可以沿设施的边框上下滑动且保持与AB平行的伸缩杆(MN和AB不重合).(1)设MN与C之间的距离为x米,试将△EMN的面积S表示成的函数;(2)当MN与C之间的距离为多少时,△EMN面积最大?并求出最大值.
(本小题满分10分)选修4-4:坐标系和参数方程. 已知圆:(为参数),直线:(为参数),. (1)若以原点为极点,以轴正半轴为极轴建立极坐标系,求出直线的极坐标方程; (2)试判断直线与圆的位置关系,并说明理由,若相交,求出其相交弦长.
(本小题满分10分)选修4-1:几何证明选讲. 如下图所示,内接于圆,,直线切圆于点,,与相交于点.求证:.
(本小题满分12分)已知椭圆:的右焦点和上顶点在直线上,、为椭圆上不同两点,且满足. (1)求椭圆的标准方程; (2)证明:直线恒过定点.
(本小题满分12分)已知函数,在处取得极值且在点处的切线与平行. (1)求函数的解析式; (2)当在上的最小值和最大值; (3)若方程在上有三个不同实根,求实数的取值范围.
(本小题满分12分)在某次质量抽测后一数学老师随机抽取了30位(其中男、女各15名)学生的成绩,得出如下表,假设80分为“优秀”,否则为“不优秀”.
(1)根据以上数据,试估计本次质量抽测数学科的优秀率(保留小数后三位); (2)完成下列列联表:
(3)利用分层抽样在“不优秀”的学生中抽取4人,再从抽取的4人随机抽取2人调查学习情况,求抽到一男一女的概率.