(本题满分12分) 已知等比数列的公比, 是和的一个等比中项,和的等差中项为,若数列满足().(Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和.
已知向量.(1)求函数的单调增区间;(2)已知锐角△ABC中角A,B,C的对边分别为a,b,c.其面积,求b+c的值.
已知函数的定义域为,对定义域内的任意x,满足,当时,(a为常),且是函数的一个极值点,(1)求实数a的值;(2)如果当时,不等式恒成立,求实数m的最大值;(3)求证:
已知椭圆的左、右焦点分别为,离心率为,P是椭圆上一点,且面积的最大值等于2.(1)求椭圆的方程;(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。
交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段,从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制直方图如图所示.(1)这20个路段轻度拥堵、中度拥堵的路段各有多少个?(2)从这20个路段中随机抽出的3个路段,用X表示抽取的中度拥堵的路段的个数,求X的分布列及期望.
已知各项均不为零的数列,其前n项和满足;等差数列中,且是与的等比中项(1)求和,(2)记,求的前n项和.